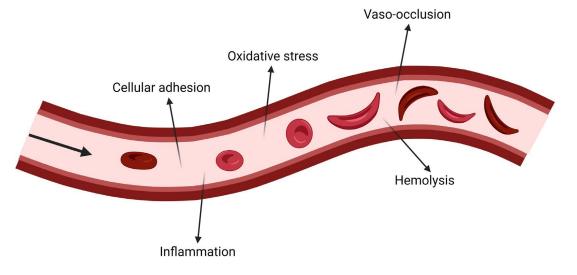


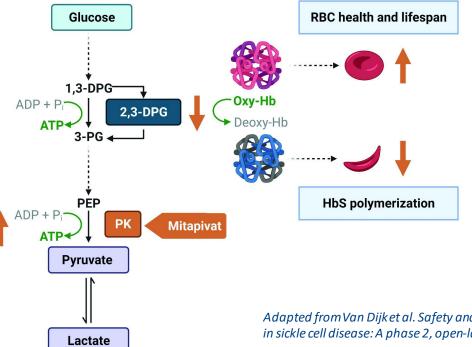
Untargeted Metabolomics on Dried Blood Spots of Patients with Sickle Cell Disease Treated with the Pyruvate Kinase Activator Mitapivat



Myrthe J. van Dijk, MD

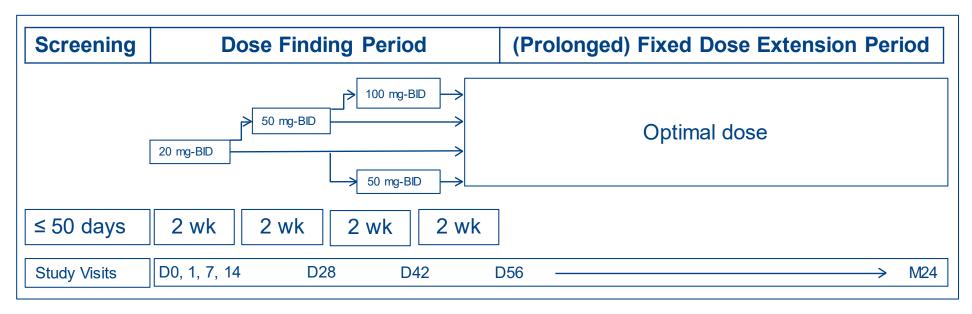
64th ASH Annual Meeting and Exposition December 10, 2022 Ernest N. Morial Convention Center, New Orleans, LA, USA

Sickle cell disease


- Sickle cell disease (SCD) is one of the most common inherited red blood cell (RBC) disorders
- SCD is characterized by polymerization of sickle hemoglobin (HbS) upon deoxygenation resulting in acute and chronic, potentially life-threatening complications
- The pathophysiology of SCD is multifactorial and highly complex

Mitapivat

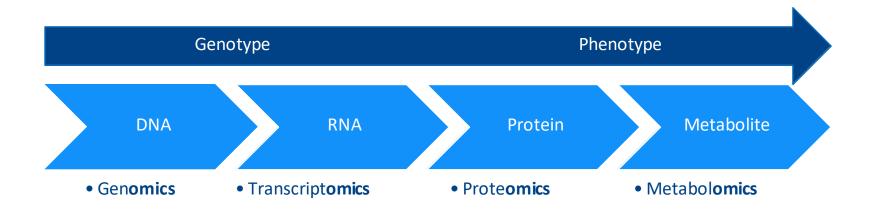
- Novel anti-sickling agent under development for SCD
- Oral, small molecule, allosteric activator of pyruvate kinase (PK)
- Activation of PK in RBCs could reduce HbS polymerization by:
 - Decreasing [2,3-diphosphoglycerate (2,3-DPG)]
 - Increasing [adenosine triphosphate (ATP)]



Adapted from Van Dijket al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in sickle cell disease: A phase 2, open-label study. Am J Hematol. 2022;97(7):E226-E229.

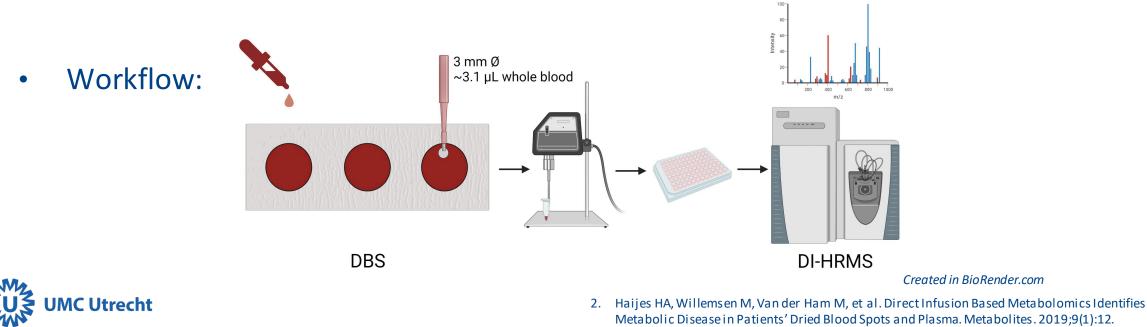
 ${\it This slide \ contains \ investigational \ products \ not \ yet \ approved \ by \ regulatory \ authorities}}$

The ESTIMATE study


- An investigator-initiated, phase 2, open-label study (EudraCT 2019-003438-18)
- Patients \geq 16 years with SCD treated with mitapivat
- Primary objective: to assess the safety and efficacy (proof of concept)
- One of the exploratory objectives: to evaluate the metabolome
- Interim analysis: baseline vs treatment week 8 at the end of the Dose Finding Period

Untargeted metabolomics

- The large-scale, unbiased, analytic study of **all metabolites**
 - e.g. biologically active small molecules (m/z = 70–600)
 - i.e. sugars, organic acids, amino acids, peptides, fatty acids, nucleotides
- To identify and characterize the complete metabolome (metabolic fingerprint): "hypothesis-generating discovery strategy"¹
- Can be used to compare groups (e.g. cases vs controls, treated vs untreated)



1. Di Minno A, Gelzo M, Stornaiuolo M, et al. The evolving landscape of untargeted metabolomics. Nutrition, Metabolism and Cardiovascular Diseases. 2021;31(6):1645-1652.

Methods

Data generation

- Dried blood spots (DBS)
 - 3 x 50 µL whole blood collected in EDTA anticoagulant tubes
- Direct-infusion high-resolution mass spectrometry (DI-HRMS)
 - Simultaneous assessment of thousands of metabolites^{2,3}

3. de Sain-van der Velden MGM, van der Ham M, Gerrits J, et al. Quantification of metabolites in dried blood spots by direct infusion high resolution mass spectrometry. Anal Chim Acta. 2017;979:45-50.

Methods

Data annotation, processing and analysis

- Metabolite annotation results in ~1900 distinct metabolites/isomers (HMDB v5.0)
- Z-scores without further data filtering or normalization in a final dataset

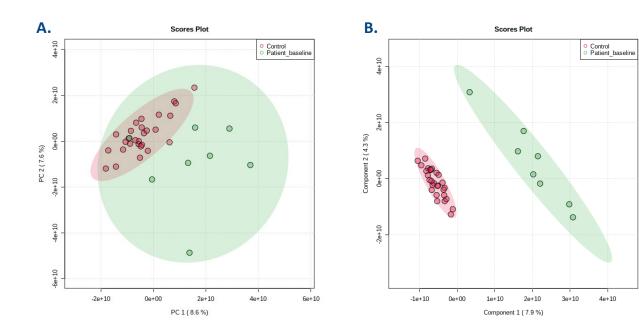
• Comparison of metabolic profiles:

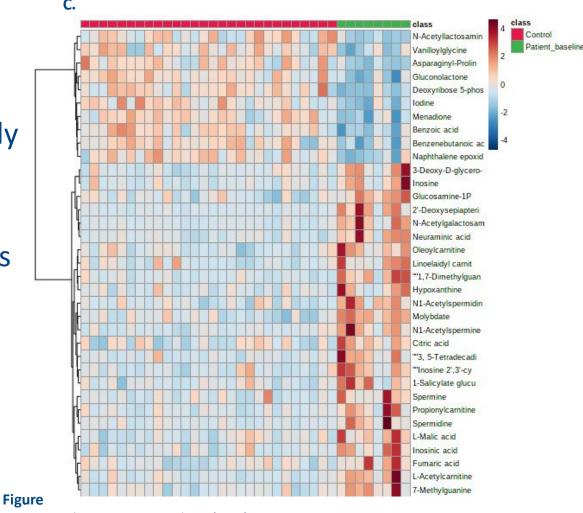
Patients with SCD and healthy controls (HCs)
Patients' baseline and treatment week 8 data

- Statistics: use of MetaboAnalyst (v5.0) and Graphpad Prism (v9.3.0)
 - (Paired) T-tests
 - Multivariate analyses
 - Heatmaps, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA)

Results: patients with SCD vs HCs

• 1907 metabolites/isomers identified in DBS of 9 patients with SCD and 29 HCs


Baseline characteristics	Patients with SCD (n=9)	HCs (n=29)
SCD genotype, n (%)	HbSS: 7 (78) HbS/β ⁰ : 1 (11) HbS/β ⁺ : 1 (11)	N/A
Age, years, median (range)	22 (16-59)	38 (25-65)
Gender, female [n (%)]	6 (67%)	21 (72%)
Hb, g/dL, mean (SD)	9.1 (1.1)	14.6 (1.4)
RETC, % of RBCs, mean (SD)	9.6 (4.8)	1.4 (0.5)
WBC, 10 ⁹ /L, , mean (SD)	8.6 (2.7)	5.6 (1.1)
PLT, 10 ⁹ /L, mean (SD)	462 (143)	276 (58)


• 8/9 (89%) patients and 28/29 (97%) HCs included in final analyses based on quality control and outlier detection

Results: patients with SCD vs HC

- Multivariate analyses yielded distinct metabolic profiles
- 55/1907 (2.9%) metabolites were significantly different between patients and HCs, e.g.:
 - Increase of acyl carnitines, (derivatives of) polyamines, purines and pyrimidines
 - Decrease of carbohydrates and benzenoids

A. Principal component analysis (PCA)

B. Partial least square discriminant analysis (PLS-DA)

C. Heatmap of top 35 metabolites identified by t-test (FDR-adjusted p-value <0.023) created using Euclidean distance with autoscaling of features

Results: baseline vs treatment week 8

- 2/1907 metabolites were significantly increased after 8 weeks of treatment with mitapivat vs baseline (FDR-adjusted p-value <0.05):
 - Butenylcarnitine, an acyl carnitine
 - Inosinic acid, or inosine-5-monophosphate (5'-IMP), a purine nucleotide

Patients with SCD	Baseline (n=9)	Treatment week 8 (n=8)	p-value*
Hb, g/dL, mean (SD)	9.1 (1.1)	10.6 (1.0)	<0.001
RETC, % of RBCs, mean (SD)	9.6 (4.8)	4.2 (1.6)	<0.001
WBC, 10 ⁹ /L, , mean (SD)	8.6 (2.7)	6.8 (2.1)	<0.05
PLT, 10 ⁹ /L, mean (SD)	462 (143)	490 (237)	ns

*The paired sample t-test or Wilcoxon signed-rank test were used when appropriate for n=8 pairs with baseline and treatment week 8 results

Results: baseline vs treatment week 8

 8/55 (14.5%) identified distinct metabolites between patients and HCs showed a significant increase after 8 weeks of treatment with mitapivat vs baseline in patients

Metabolite	Baseline	Treatment week 8	Unadjusted p-value
Vanilloylglycine	-1.54x10 ⁹ (1.16 x10 ⁹)	0.08x10 ⁹ (0.61x10 ⁹)	0.005
Oleoylcarnitine	1.70x10 ⁹ (1.49x10 ⁹)	4.60x10 ⁹ (2.40x10 ⁹)	0.008
Orotidine	1.23x10 ⁹ (1.10x10 ⁹)	4.20x10 ⁹ (2.58x10 ⁹)	0.011
Creatinine	-1.29x10 ⁹ (0.82x10 ⁹)	0.05 x10 ⁹ (0.59x10 ⁹)	0.015
Asparaginyl-Proline	-1.61x10 ⁹ (0.67x10 ⁹)	-1.07x10 ⁹ (0.81 x10 ⁹)	0.021
L-Palmitoylcarnitine	2.45x10 ⁹ (2.49x10 ⁹)	5.13x10 ⁹ (3.79x10 ⁹)	0.025
N-Acetyl-L-phenylalanine	-1.52x10 ⁹ (0.52x10 ⁹)	-0.66x10 ⁹ (0.79x10 ⁹)	0.026
2-Amino-3-phosphonopropionic acid	-1.02x10 ⁹ (1.02x10 ⁹)	-0.25x10 ⁹ (1.37x10 ⁹)	0.046

Conclusion

- Patients with SCD showed a distinct metabolic profile compared to HCs
 - RBC-related pathways?
 - Acyl carnitines would be involved in the turnover and repair of RBC membranes⁴
 - Polyamines have been found to possibly stabilize the RBC membrane⁵
 - Purinergic signaling pathways mediate hypoxic metabolic reprogramming⁶
- In the patient cohort, 8 weeks of treatment with mitapivat showed, again, changes in an acyl carnitine and purine nucleotide compared to baseline
 - Reflecting cellular response? Changes in blood components?
- Promising starting point to further unravel the underlying pathophysiology of SCD and to characterize the cellular effects of PK activators and other therapies in SCD

- 4. Arduini A, Mancinelli G, Radatti GL, Dottori S, Molajoni F, Ramsay RR. Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes. The Journal of biological chemistry. 1992;267(18):12673-81.
- 5. Ballas SK, Mohandas N, Marton LJ, Shohet SB. Stabilization of erythrocyte membranes by polyamines. Proc Natl Acad Sci U S A. 1983;80(7):1942-6.
- 6. Adebiyi MG, Manalo JM, Xia Y. Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv. 2019 Apr 23;3(8):1347-1355.

Acknowledgements

All patients who participated in the ESTIMATE study

University Medical Center Utrecht:

Center for Benign Hematology, Thrombosis and Hemostasis – Van Creveldkliniek

- Eduard J. van Beers
- Cleo Derichs
- Marije Bartels
- Els Zwagemaker
- Roger E.G. Schutgens

Central Diagnostic Laboratory – Research

- Richard van Wijk
- Minke A.E. Rab
- Brigitte A. van Oirschot
- Jennifer Bos
- Wouter W. van Solinge

Section Metabolomic Diagnostics – Department of Genetics:

- Judith J.M. Jans
- Sigrid van der Veen
- Birgit van Dooijeweert

All members of the Dutch SCORE consortium

Amsterdam University Medical Centers:

- Erfan Nur
- Bart J. Biemond

Erasmus University Medical Center:

- Anita W. Rijneveld
- Marjon H. Cnossen

Sponsor: Julius Clinical, Zeist, The Netherlands

Discussion

