
ACTIVATE-Kids: Mitapivat in children with pyruvate kinase deficiency who are not regularly transfused

Rachael F Grace, MD,¹ Patrick D Tyler, MD,² Meredith Little, MPH,² Penelope A Kosinski, MS,² Vanessa Beynon, MD²

¹Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA; ²Agios Pharmaceuticals, Inc., Cambridge, MA, USA

BACKGROUND

- the treatment of hemolytic anemia in adults with PK deficiency (**Figure 2**)^{5,6}
- Two clinical trials assessing the efficacy and safety of mitapivat in adults with PK deficiency met their primary endpoints (Figure 3)^{7,8}
- Findings from ACTIVATE⁷ and ACTIVATE-T⁸ support the evaluation of mitapivat in pediatric patients with PK deficiency, independent of transfusion needs
- Two phase 3 studies are in-progress to evaluate the efficacy and safety of mitapivat treatment in children with PK deficiency who are not regularly transfused (ACTIVATE-Kids; NCT05175105) and who are regularly transfused (ACTIVATE-KidsT; NCT05144256)

Figure 3. ACTIVATE and ACTIVATE-T phase 3 studies

CACTIVATE

- Adult patients with PK deficiency who are not regularly transfused⁷
- Primary efficacy endpoint achieved: Higher Hb response rate with mitapivat than placebo – 40% achieved Hb response on mitapivat vs 0% on placebo
- (2-sided p<0.0001) · Defined as \geq 1.5 g/dL increase in Hb concentration from BL sustained at \geq 2 scheduled assessments at Weeks 16, 20,
- and 24 during fixed-dose period • Significant improvements observed with mitapivat for
- secondary endpoints including average change from BL in Hb concentration and in markers of hemolysis and hematopoietic activity, and change from BL in PROs
- Safety profile: No new safety signals reported

CACTIVATE-T

- Adult patients with PK deficiency who are regularly transfused⁸
- Primary efficacy endpoint achieved: Significant reduction in transfusion burden with mitapivat
- 37% (95% CI 19.4-57.6; one-sided p=0.00017) of patients achieved per-protocol transfusion reduction response in fixeddose period
- Defined as \geq 33% reduction in number of RBC units transfused during fixed-dose period, compared with patient's individual historical transfusion burden standardized to 24 weeks achieved normal Hb concentrations during the fixed-dose
- 22% of patients were transfusion-free and 11% of patients
- period • Improvements in HRQoL observed based on PK deficiency-
- specific PROs • Safety profile: No new safety signals reported

BL, baseline; Hb, hemoglobin; HRQoL, health-related quality of life; LTE, long-term extension; PK, pyruvate kinase; PRO, patient-reported outcome; RBC, red blood cell

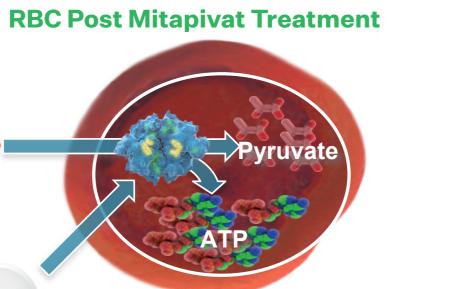
OBJECTIVE

• Report the design of the phase 3 ACTIVATE-Kids study, evaluating the efficacy and safety of mitapivat in children with PK deficiency who are not regularly transfused

METHODS

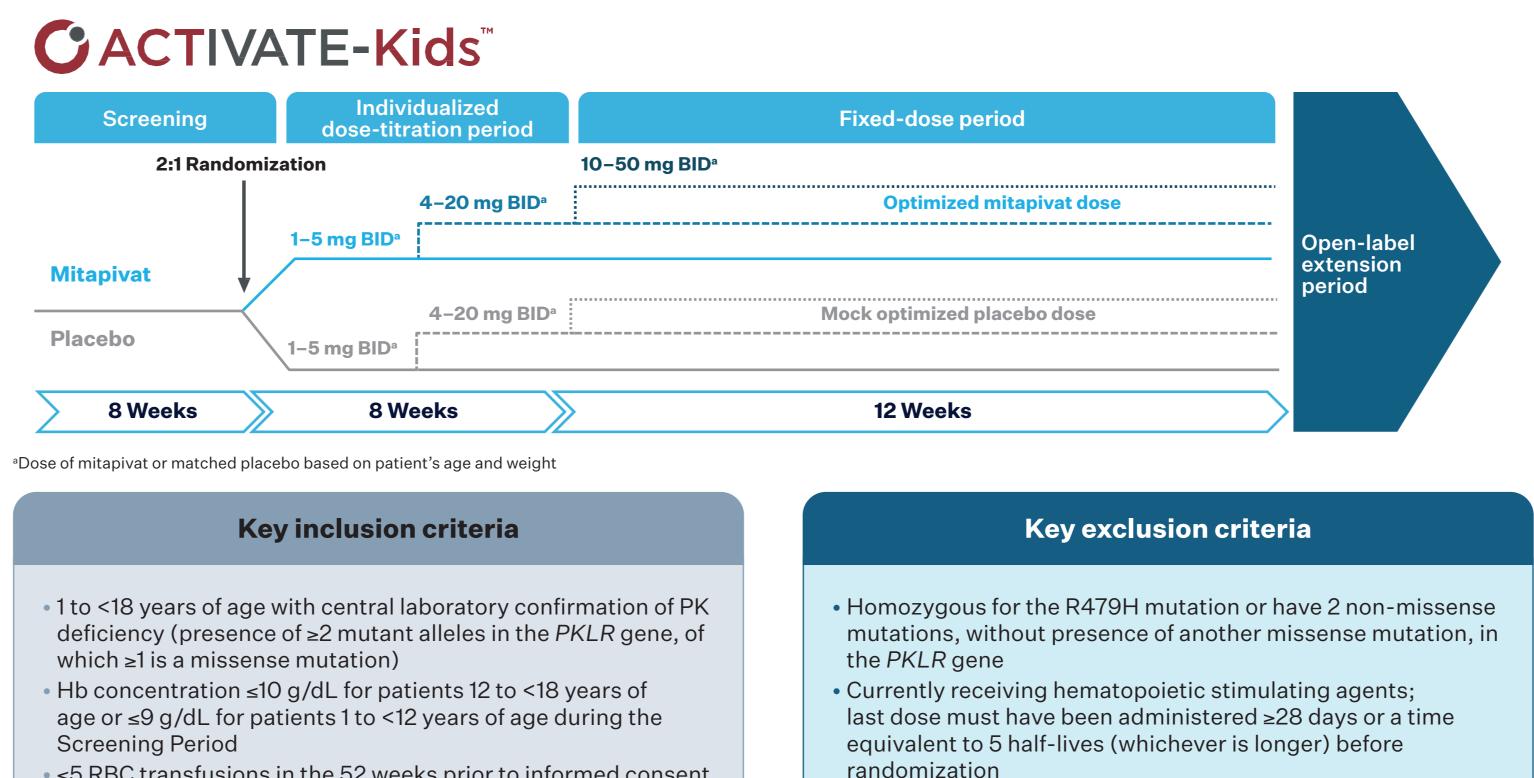
Study design

- ACTIVATE-Kids is a global, phase 3, multicenter, randomized, double-blind, placebo-controlled study of children 1–<18 years of age with PK deficiency **who are not regularly transfused (Figure 4)**
- Following an 8-week screening period, patients will enter the double-blind period consisting of an 8-week dose-titration period followed by a 12-week fixed-dose period
- Patients who complete the double-blind period may receive mitapivat for up to 5 years in an open-label extension period


Figure 2. Mechanism of action of mitapivat

Mitapiva

ATP, adenosine triphosphate; RBC, red blood cell


• Pyruvate kinase (PK) deficiency is a rare, inherited disorder caused by mutations in the PKLR gene resulting in defects in the red blood cell (RBC) PK

- PK deficiency is primarily managed with RBC transfusions in children <5 years of $age^{3,4}$ • Splenectomy is common in children who are ≥ 5 years of age to alleviate transfusion needs
- However, splenectomy is associated with risk of sepsis and thrombosis and is only partially effective at improving anemia
- No pharmacotherapies are approved for the treatment of PK deficiency in children, and therapies targeting the underlying cause of hemolysis are needed³

Figure 4. ACTIVATE-Kids study design

- ≤5 RBC transfusions in the 52 weeks prior to informed consent and no transfusions ≤ 12 weeks prior to first dose

BID, twice daily; Hb, hemoglobin; PK, pyruvate kinase; PKLR, gene encoding the pyruvate kinase liver and red blood cell isozymes; RBC, red blood cell

- Randomization: At least 30 children will be randomized
- Stratification factors: Age (1 to <6 years, 6 to <12 years, and 12 to <18 years) • A minimum of 6 patients in each age group will then be randomized (2:1) to receive mitapivat or placebo at doses of 1–50 mg twice daily (BID)
- Study treatment
- Drug will be administered orally (as granules taken with food or tablets swallowed whole) at a dose of 1–50 mg BID, depending on age and weight (**Table 1**)
- proposed dose provides exposure similar to that in adults at the same dose level
- To gradually increase hemoglobin (Hb) levels and maximize efficacy during the dose-titration period, study drug will be
- titrated with dose increases occurring approximately every 4 weeks • Study endpoints are shown in **Table 2**

Table 1. Study drug dose levels

Age	Dose level 1ª (mg, BID dosing)	Dose level 2 (mg, BID dosing)	Dose level 3 (mg, BID dosing)
1 to <2 years	1	4	10
2 to <12 years			
Weight <20 kg	1	5	15
Weight ≥20 to <40 kg	2	10	20
Weight ≥40 kg	5	20	50
12 to <18 years ^b	5	20	50

^aStarting dose; ^bDose to be administered only if patients 12 to <18 years of age weigh ≥40 kg; if patients 12 to <18 years of age weigh <40 kg, dosing by weight as described for the 2 to <12 years of age category should be followed: BID. twice daily

Table 2. Study endpoints

Primary endpoint

- Hb response, defined as a \geq 1.5 g/dL increase in Hb concentration from BL that is sustained at \geq 2 scheduled assessments at Weeks 12, 16, and 20 in the double-blind period^a Secondary endpoint
- Average change from BL in Hb concentration at Weeks 12, 16, and 20
- Maximal Hb concentration increase from BL during the double-blind period
- Changes over time in height- and weight-for-age z-score, BMI-for-age z-score, and BMD z-score and bone age ratio Average change from BL in indirect bilirubin and LDH at Weeks 12, 16, and 20
 Change from BL in haptoglobin at Week 16
- Change from BL in reticulocytes
- transferrin saturation) Change from BL in HRQoL assessments
- Pharmacokinetic parameters including, but not limited to, C_{max}, AUC, C_{ss}, and C_{troug} **Exploratory endpoint**
- Change from baseline in biomarkers including additional markers of erythropoietic activity (eg, EPO) and iron overload (LIC)
- Change from BL in HRQoL PRO scores: PedsQL, Multidimensional Fatigue Scale, PedsQL Generic Core Scales
- Type, severity, and relationship to study drug of AEs and serious AEs during the OLE period
- Acceptability assessments of the age-appropriate solid dosage form

^aThe patient's Hb concentration at BL is defined as the average of all available Hb concentrations collected for that patient during the screening period up to the first dose of study drug; ^bFemale patients only AE, adverse event; AUC, area under the concentration-time curve; BL, baseline; BMD, bone mineral density; BMI, body mass index; C_{max} maximum plasma concentration; C_{max} concentration at steady state; C_{traugh} trough concentration; EPO, erythropoietin; Hb, hemoglobin; HRQoL, health-related quality of life; LDH, lactate dehydrogenase; LIC, liver iron concentration; OLE, open-label extension; PedsQL, Pediatric Quality of Life; PRO, patient-reported outcomes

Presented at the 64th American Society of Hematology (ASH) Annual Meeting and Exposition, December 10–13, 2022, New Orleans, LA, USA, and Virtual

• Prior bone marrow or stem cell transplantation

• Pediatric dosing is based on pharmacokinetic modeling and simulation such that, within each age and weight category, the

• Changes in safety assessments including measurement of sex hormones, sexual maturity rating (Tanner stage), development and assessment of ovarian cysts^a

• Change from BL in markers of iron metabolism, and indicators of iron overload (serum iron, serum ferritin, total iron-binding capacity, hepcidin, transferrin/


• PRO measures, efficacy parameters, markers of iron overload and metabolism, and exploratory biomarkers, during the OLE period

Statistics

- prior, will be >1
- dependent variable and treatment as the independent variable

RESULTS

- A total of 20 sites are planned

CONCLUSIONS

- deficiency who are not regularly transfused

Acknowledgments: Editorial assistance was provided by Kate Collins, MPharm, Adelphi Communications, Macclesfield, UK, and supported by Agios Pharmaceuticals, Inc.

Disclosures: This study was funded by Agios Pharmaceuticals, Inc.

RF Grace: Agios, Novartis, Dova – research funding; Principia, Agios – consulting; **PD Tyler:** employee and shareholder; **M Little:** employee and shareholder; **PA Kosinski:** Agios – consultancy and shareholder; **V Beynon:** Agios – employee and shareholder

References: 1. Grace RF et al. Am J Hematol 2015;90:825–30. 2. Zanella A et al. Br J Haematol 2005;130:11–25. 3. Grace RF et al. Blood 2020;136:1241–49. 4. Chonat S et al. Pediatr Blood Cancer 2021;68:e29148. 5. Kung C et al. Blood 2017;130:1347–56. 6. PYRUKYND® (mitapivat) [US prescribing information]. Cambridge, MA: Agios Pharmaceuticals, Inc.;2022. 7. Al-Samkari H et al. N Engl J Med 2022;386:1432–42. 8. Glenthøj A et al. Lancet Haematol 2022;S2352-3026(22)00214-9.

• With a planned sample size of 30 randomized patients (mitapivat, N=20; placebo, N=10), and assuming a Hb response rate of 35% for mitapivat and 5% for placebo, there will be >80% probability that the lower bound of the 95% credible interval for the odds ratio of Hb response (mitapivat vs placebo), based on the Bayesian logistic regression model with weight ≥ 0.35 , of a robust

• The primary endpoint of Hb response will use a Bayesian logistic regression model, including Hb response status (yes, no) as the

• Global site recruitment is in-progress; geographic distribution of planned study sites is shown in **Figure 5**

• Support will be provided that may allow patients to travel to open sites to participate • Patient enrollment has also begun, with the first patient enrolled in July 2022

• There are no pharmacotherapies approved in children that target the underlying cause of hemolytic anemia in PK deficiency, representing a global unmet need in this patient population

 ACTIVATE-Kids is the first study to evaluate treatment with mitapivat, a pharmacotherapy that ameliorates hemolysis by treating the underlying enzymatic defect in PKR, in children with PK

- A complementary study (ACTIVATE-KidsT; NCT03559699) will evaluate mitapivat in children with PK deficiency who are regularly transfused

• Mitapivat has the potential to become the first approved pharmacotherapy that treats PK deficiency in children, including in pediatric patients who are not regularly transfused

• Enrollment in the ACTIVATE-Kids study (and ACTIVATE-KidsT) is in-progress

