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1/52b (1.9%)
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32/52 (61.5%)

M/M

M/NM
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NM/NM

aIncludes 3 patients with homozygous multi-exon deletions, 2 patients with loss-of function truncating or splice variants, and 1 patient 
with 2 amino acid deletions as well as the insertion of 3 amino acids; bM/unidentified represents patients with 1 PKLR variant reported, 
but with PK enzyme data supporting a clinical diagnosis of PK deficiency
M/M, missense/missense; M/NM, missense/non-missense; M/unidentified, missense/variant unknown; NM/NM, non-missense/non-
missense; PK, pyruvate kinase

Figure 2. Classification of PKLR variants in patients likely to have PK deficiency

70

80

90

100

60

50

Diagnosis or 
likely diagnosis

41/74 (55.4%)

Possible diagnosis

10/74 (13.5%)

Inconclusive due to only 1
PKLR variant

15/74 (20.3%)

Diagnosis in
other genes

8/74 (10.8%)

40

30

20

10

0

P
at

ie
n

ts
 (

%
)

Diagnostic stratification

Figure 1. Diagnostic stratification based on genetic testing results of patients  
with ≥1 reportable PKLR mutation

aDual diagnosis in PIEZO1 and SLC4A1 was found in the same patient
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BACKGROUND
• Hereditary hemolytic anemias (HHAs) are a heterogeneous group of rare blood 

disorders, with clinical presentation varying from asymptomatic to severe anemia1

• HHAs are characterized by red blood cell destruction, some of which can be 
caused by enzyme deficiencies such as pyruvate kinase (PK) deficiency (as a 
result of mutations in the PKLR gene)1

• The wide range of natural histories and management approaches for different 
HHAs means there is a significant need to accurately diagnose them

• Given the rarity of PK deficiency and the overlap of clinical presentation with other 
HHAs, routine diagnostic techniques can be inconclusive in many patients2

• Next-generation sequencing (NGS) may allow for more sensitive and specific 
diagnosis of HHAs, including PK deficiency3

• A no-cost diagnostic program for patients with suspected HHA has been available 
since 2018 (ARUP® 2018–2020, AnemiaID®/PerkinElmer® 2020–present) to 
provide diagnosis using an NGS panel of anemia-associated genes

OBJECTIVE
• To describe the results from patients tested using a no-cost diagnostic 

program and who were identified as carrying ≥1 reportable variant(s) in the 
PKLR gene

METHODS
• The NGS panel used in this analysis includes ~50 genes (Table 1) 

• Genes included in the panel encode cytoskeletal proteins and enzymes relating to 
HHA, including enzymopathies such as PK deficiency and similar disorders with 
overlapping clinical features

 – The panel covers the complete coding region, splice site junctions, and, where 
appropriate, deep intronic or regulatory regions

• Targeted gene capture and library construction for NGS were performed using a 
Whole Blood and Saliva kit (PerkinElmer®) and sequenced on Illumina® NGS 
systems

• Samples were sequenced using 150 base pair paired-end sequencing at target 
average coverage of 80×

• NGS output data were summarized descriptively for all patients

RESULTS
• Samples from 1007 patients were run by the program from July 2018 to May 2022

• 74 (7%) probands patients were identified with ≥1 reportable PKLR variant and 
included in this analysis 

 – 18/74 (24%) were homozygous for PKLR variants (including 3 patients 
homozygous for large deletions), 33/74 (45%) were heterozygous for 2 PKLR 
variants, and 23/74 (31%) samples had just 1 PKLR variant

• From the 74 patients, 127 variants were identified

 – 91/127 (72%) PKLR variants were classified as likely pathogenic (LP)/pathogenic 
(P)

 – 36/127 (28%) PKLR variants were classified as variants of uncertain significance 
(VUSs)

• 37/74 (50%) patients had available PK enzyme levels

 – PK enzyme levels ranged from <1.1 to 8.5 U/g hemoglobin (Hb)

 – Most patients (21/37; 57%) with available PK enzyme levels had <2.0 U/g Hb

 – 3 patients had a molecular diagnosis in the PKLR gene and normal PK enzyme 
levels (>5.5 U/g Hb), 2 of whom had received a transfusion in the prior 2 weeks 
(the transfusion status of the other patient was unknown)

• Adult (≥18 years) and pediatric patients (<18 years) were distributed approximately 
evenly in the cohort 

 – 29/74 (39%) were ≥30 years at testing, of whom 18/29 (62%) were ≥50 years 

Diagnostic stratification based on genetic testing results
• Of the 74 probands patients, 41 patients had a diagnostic or likely diagnostic 

result in the PKLR gene (Figure 1)

 – 25 patients were homozygous or compound heterozygous for LP/P variants, 
including 3 patients homozygous for a large deletion

 – 13 patients had 2 LP/P PKLR variants of unknown phase

 – 3 patients were compound heterozygous for an LP/P variant and a VUS

• Possible diagnostic PKLR findings were identified in 10 patients

 – 4 patients were homozygous or compound heterozygous for PKLR VUS 
variants

 – 6 patients had LP/P sequence variants and a VUS with phase unknown

• There were 15 patients whose diagnosis was inconclusive because only 1 PKLR 
variant was identified 

• 8 patients’ diagnosis was identified in other genes; these genes were SPTA1 
(n=2), UGT1A1 (n=2), G6PD, ANK1, EPB41, PIEZO1,a and SLC4A1a (all n=1)

Diagnostic outcome from combined genetic and clinical testing results
• Of the 25 patients with a possible or inconclusive diagnosis in PKLR based on 

genetic testing results, 11 patients had clinical or biochemical data supporting a 
diagnosis of PK deficiency (ie, were likely to have PK deficiency) 

• These 11 patients, in addition to the 41 patients with a diagnosis in PKLR based 
on genetic testing, resulted in a total of 52 patients who were likely to have PK 
deficiency 

 – The 52 patients were classified as missense/missense (M/M), missense/
non-missense (M/NM), non-missense/non-missense (NM/NM), or 
missense/variant unknown (M/unidentified, for which a second PKLR variant 
was not found)

 – All 22 other patients with just 1 PKLR variant had either another molecular 
diagnosis (n=8) or there was insufficient clinical evidence to consider them 
as patients with PK deficiency (n=14)

• Of the 52 patients likely to have PK deficiency (Figure 2): 

 – 32/52 (62%) patients had an M/M genotype

 – 13/52 (25%) patients had an M/NM genotype

 – 1/52 (2%) patient had only 1 missense variant identified and 1 unknown 
variant, but based on PKLR enzyme data (the patient had a PK enzyme level 
of 2.6 U/g Hb, below the normal range) they were considered by clinicians as 
likely to have PK deficiency (M/unidentified genotype) 

 – 6/52 (12%) patients had an NM/NM genotype, including 3 homozygous for 
multi-exon deletions, 2 with other loss-of-function variants (truncating or 
splice), and 1 with 2 amino acid deletions as well as the insertion of 3 amino acids

Table 1. Genes included in the NGS panel for a no-cost diagnostic program, and their  
associated disorders

Genes included in 
NGS panel Associated disorder

ABCG5 Sitosterolemia

ABCG8 Sitosterolemia

ADA ADA deficiency

AK1 AK1 deficiency

ALAS2 Sideroblastic anemia 1; erythropoietic protoporphyria

ALDOA ALDOA deficiency

ANK1 Spherocytosis

ATP11C Congenital hemolytic anemia

CDAN1 CDA type Ia

CDIN1 CDA type Ib

COL4A1 COL4A1-related disorders

CYB5R3 Methemoglobinemia type 1; methemoglobinemia type 2

EPB41 Elliptocytosis-1

EPB42 Spherocytosis type 5

G6PD G6PD deficiency

GATA1 GATA1-related anemia and/or thrombocytopenia

GCLC Hemolytic anemia due to GCL deficiency

GPI Acute/chronic hemolytic anemia due to GPI deficiency

GPX1 Hemolytic anemia due to GPX deficiency

GSR Hemolytic anemia due to GSR deficiency

GSS Hemolytic anemia due to GSS deficiency

GYPC Elliptocytosis; glycophorin C deficiency

HK1
Hemolytic anemia due to HK deficiency; neurodevelopmental disorder with visual defects 

and brain anomalies; hereditary motor and sensory neuropathy, Russe type; retinitis 
pigmentosa 79

KCNN4 Dehydrated hereditary stomatocytosis 2

KIF23 CDA type III

LPIN2 Majeed syndrome

NT5C3A Hemolytic anemia due to UMPH1 deficiency

PFKM Glycogen storage disease 7

PGK1 PGK1 deficiency

PIEZO1 Dehydrated hereditary stomatocytosis with or without pseudohyperkalemia and/or 
perinatal edema; lymphatic malformation 6

PKLR Elevated ATP of erythrocytes; PK deficiency

RHAG Overhydrated hereditary stomatocytosis; Rh-null, regulator type hemolytic anemia

RPL11 Diamond–Blackfan anemia 7

RPL35A Diamond–Blackfan anemia 5

RPL5 Diamond–Blackfan anemia 6

RPS10 Diamond–Blackfan anemia 9

RPS19 Diamond–Blackfan anemia 1

RPS24 Diamond–Blackfan anemia 3

RPS26   Diamond–Blackfan anemia 10

RPS7 Diamond–Blackfan anemia 8

SEC23B CDA type II

SLC2A1 SLC2A1-related disorders

SLC4A1 SLC4A1-related disorders

SLCO1B1 Hyperbilirubinemia (rotor type); Rotor syndrome

SLCO1B3 Hyperbilirubinemia (rotor type); Rotor syndrome

SPTA1 Elliptocytosis-2; spherocytosis type 2; pyropoikilocytosis

SPTB Elliptocytosis-3; spherocytosis type 2

TPI1 Hemolytic anemia due to TPI1 deficiency

UGT1A1 Crigler–Najjar syndrome 1 & 2; hyperbilirubinemia (unconjugated); Gilbert syndrome

XK McLeod syndrome with or without chronic granulomatous disease

n  Genes included in the ARUP® NGS panel only 
n  Genes included in the PerkinElmer® NGS panel only
n  Genes included in both the ARUP® and PerkinElmer® NGS panels

ADA, adenosine deaminase; AK1, adenylate kinase 1; ALDOA, aldolase A; CDA, congenital dyserythropoietic anemia; COL4A1, collagen, 
type IV, alpha 1; G6PD, glucose-6-phosphate dehydrogenase; GCL, gamma-glutamylcysteine synthetase; GPI, glucose phosphate 
isomerase; GPX, glutathione peroxidase; GSR, glutathione reductase; GSS, glutathione synthetase; HHA, hereditary hemolytic anemia; 
HK, hexokinase; NGS, next-generation sequencing; PGK1, phosphoglycerate kinase 1; PK, pyruvate kinase; SLC2A1, solute carrier family 2 
member 1; SLC4A1, solute carrier family 4 member 1; TPI1, triosephosphate isomerase; UMPH1, uridine 5-prime monophosphate 1
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SUMMARY
• NGS is an effective platform for the diagnosis of PK deficiency

• Most pathogenic variants identified were small sequence 
variants, but large deletions in PKLR are not uncommon and 
should be part of the NGS panel

• Approximately 39% of the patients tested were ≥30 years of  
age, some of whom were without a previous diagnosis, 
emphasizing the complexity of a PK deficiency diagnosis in 
patients with lifelong anemia

• NGS, through this no-cost diagnostic testing program, may 
assist in making a genetic diagnosis, particularly in situations 
when PK enzyme levels are inconclusive or potentially 
confounded (eg, patients receiving frequent transfusions)

With the recent advances in drug 
development and the approval of a new 
therapy for patients with PK deficiency, 

improved diagnosis may increase 
awareness of the disease and allow for 

appropriate treatment and counseling for 
patients with this condition
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