Comorbidities and complications across genotypes in adult patients with pyruvate kinase deficiency: Analysis from the Peak Registry

Andreas Glenthøj, MD,¹ Rachael F Grace, MD,² Eduard J van Beers, MD,³ Joan-Lluis Vives Corrons, MD,⁴ Bertil Glader, MD,³ Joan-Lluis Vives Corrons, MD,⁴ Bertil Glader, MD,⁹ Paola Bianchi, BSc, PhD¹⁰

¹Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; ²Dana-Farber/Boston, MA, USA; ³Van Creveldkliniek, Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; ⁴Institute for Leukaemia Research Josep Carreras ENERCA Coordinator, University of Toronto, ON, Canada; ⁷Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁷Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁷Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁷Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁷Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁷Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁹Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁹Metabolic Support UK, Wrexham, UK; ⁸Department of Pediatrics, Palacky University of Toronto, ON, Canada; ⁹Metabolic Support UK, Wrexham, UK; ⁹Metabolic Support UK, Wrexham, Wrexh and University Hospital, Olomouc, Czech Republic; ⁹Agios Pharmaceuticals, Inc., Cambridge, MA, USA; ¹⁰UOC Ematologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy

BACKGROUND

- Pyruvate kinase (PK) deficiency is a rare, congenital, glycolytic enzymopathy caused by mutations in the PKLR gene, which leads to lifelong hemolytic anemia and may result in complications such as iron overload, pulmonary hypertension, and gallstones¹
- PK deficiency has wide genetic heterogeneity, with >300 mutations reported, and previous data suggest that disease complications may be common regardless of genotype²
- To better understand the characteristics and disease burden of patients diagnosed with PK deficiency, the observational PK Deficiency Natural History Study (NHS; NCT02053480) was initiated in 2014 at 31 sites across 6 countries, and followed patients for 2 years^{1,3}
- The Peak Registry (NCT03481738) was initiated in 2018 as a global retrospective and prospective observational study of patients diagnosed with PK deficiency to continue and expand on the PK Deficiency NHS and the understanding of PK deficiency, with a targeted enrollment of approximately 500 adult and pediatric patients at ~60 sites in up to 20 countries⁴

OBJECTIVE

 To further characterize comorbidities and complications across genotypes in adult patients with PK deficiency enrolled in the Peak Registry

METHODS

• The Peak Registry is a global retrospective and prospective observational study of adult and pediatric patients diagnosed with PK deficiency (**Figure 1**)

^aParticipants in the Peak Registry who were originally included in the NHS and for whom data are integrated within the Peak Registry may have a cumulative follow-up exceeding 11 years; NHS, Natural History Study; PK, pyruvate kinase

- Adult patients (\geq 18 years) were eligible for inclusion in this analysis if they had available age at enrollment and complete genotype information as of the data cutoff date of 29June2021
- For this analysis, adults with complete *PKLR* genotype data were grouped into 3 cohorts: missense/missense (M/M), missense/non-missense (M/NM), and nonmissense/non-missense (NM/NM):
- NM mutations included nonsense, frameshift, in-frame small indels, large deletions, and splicing variants (including R479H)
- Genotype classifications were aligned with those previously reported from the PK Deficiency NHS²
- Data on demographics, laboratory values, and medical history inclusive of comorbidities and complications at enrollment were summarized descriptively
- Comorbidities and complications common in patients with PK deficiency were identified in collaboration with Peak Registry Steering Committee members and based on evidence previously reported in the literature^{1,2,5}
- Categories of comorbidities and complications with high clinical significance to the adult PK deficiency population were included in this analysis (supplemental material [QR code] contains the full breadth of comorbidities and complications)

RESULTS

Baseline characteristics

- As of the 29June2021 data cut-off date, 90/103 (87.4%) adult patients in the registry had complete *PKLR* genotype data (**Table 1**)
- Of these 90 patients, 57 (63.3%) were classified as M/M, 28 (31.1%) as M/NM, and 5 (5.6%) as NM/NM
- The distribution of the 3 classes of genotypes from patients with available data in each Peak Registry enrollment country is shown in **Figure 2**

Medical history

- Median age (range) of PK deficiency diagnosis was 16.0 years (0–68) for the overall adult population (all genotypes), 21.0 years (0–68) for M/M patients, 12.0 years (0-40) for M/NM patients, and 0.0 years (0-0) for NM/NM patients (**Table 1**)
- Among the 87 patients with known transfusion status, 36.8% had never been transfused (M/M: 44.4%; M/NM: 28.6%; NM/NM: 0.0%)
- Splenectomy had been performed in almost half of M/M patients (47.3%), the majority of M/NM patients (60.7%), and all NM/NM patients (100.0%)

Table 1. Baseline characteristics and medical history

It patients enotypes	Genoty	vpe subgroups	
enotynes			
	M/M N=57	M/NM N=28	NM/NMª N=5
8.0–77.0) 36.0	(18.0–77.0) 25.5	6 (18.0–77.0) 42.0) (20.0–50.0)
90 (61.1) 35,	/57 (61.4) 16	6/28 (57.1)	4/5 (80.0)
87 (0–68) 21.4	56 0 (0–68) 12	27 .0 (0-40)	4 0.0 (0–0)
37 (36.8) 24/	(54 (44.4) 8/	/28 (28.6)	0/5 (0.0)
4 (9.5) 4/	/47 (8.5) 3,	/23 (13.0)	0/4 (0.0)
4 (4.2) 11	1.5 (5.2)	9.0 (2.7)	NA
4 (90.5) 43,	/47 (91.5) 20)/23 (87.0) 4	-/4 (100.0)
3 (0.9) 0	0.2 (0.8)	0.5 (1.2)	1.0 (0.8)
16	10	5	1
88 (54.5) 26/	/55 (47.3) 17,	/28 (60.7) 5	5/5 (100.0)
48	26	17	5
9.0	0 (2–27) 4	I.O (1–18)	4.0 (1–8)
34 (35.7) 15/	/51 (29.4) 12	/28 (42.9)	3/5 (60.0)
	$\begin{array}{c} 18.0-77.0) & 36.0 \\ 90 (61.1) & 35, \\ 87 \\ (0-68) & 21. \\ 37 (36.8) & 24, \\ 74 (9.5) & 4, \\ 4 (4.2) & 11 \\ 74 (90.5) & 43, \\ 3 (0.9) & 0 \\ 16 \\ 38 (54.5) & 26, \\ 48 \\ 5 (1-27) & 9. \\ 34 (35.7) & 15, \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ients with known results (denoted as N') was used as the denominator in calculation of percentage. Patients with data missing, or with response as "Not Reported" or "Not Done" were excluded from the denominator; "Low NM/NM patient numbers make the true prevalence of complications" difficult to assess; ^bAge at PK deficiency diagnosis=year of PK deficiency diagnosis-year of birth; M/M, missense/missense; M/NM, missense/nonmissense: NA, non-applicable: NM/NM, non-missense/non-missense: PK, pyruvate kinase: SD, standard deviation: vr. year

N represents the total number of adult patients from each country with available age at enrollment and complete PKLR genotype data in the Peak Registry as of June 2021; n represents the number of adult patients with each PK deficiency genotype enrolled in each country; M/M, missense/missense; M/NM, missense/non-missense; NM/NM, non-missense/non-missense; PK, pyruvate kinase

Baseline hematologic and iron markers

- At registry enrollment, median (range) hemoglobin in the M/M, M/NM, and NM/NM cohorts was 9.9 g/dL (7.1–14.2), 9.1 g/dL (6.7–14.1), and 7.3 g/dL (6.9–8.1), respectively (**Table 2**)
- Although all (n=5; 100.0%) NM/NM patients had been splenectomized, median hemoglobin levels in this subgroup were numerically lower than in the M/M and M/NM subgroups

Table 2. Baseline hematologic and iron markers

All adult patients	Genotype subgroups				
All genotypes N=90	M/M N=57	M/NM N=28	NM/NMª N=5		
51	37	9	5		
9.3 (6.7–14.2)	9.9 (7.1–14.2)	9.1 (6.7–14.1)	7.3 (6.9–8.1)		
21	16	3	2		
6 (0-40)	5 (0-40)	27 (10–30)	25 (20–30)		
29	20	6	3		
43.0 (13.7–155.5)	37.3 (13.7–108.1)	54.8 (15.1–155.5)	69.0 (41.6–94.1)		
34	26	7	1		
225 (133–849)	224 (133–849)	222 (186–324)	239 (239–239)		
36	29	6	1		
404 (19–2263)	317 (19–2263)	769 (160–1164)	926 (926–926)		
	All genotypes N=90 51 9.3 (6.7–14.2) 21 6 (0–40) 29 43.0 (13.7–155.5) 34 225 (133–849) 36	All genotypes M/M $N=57$ 5137 51 37 $9.3 (6.7-14.2)$ $9.9 (7.1-14.2)$ 2116 $6 (0-40)$ $5 (0-40)$ 292043.0 (13.7-155.5) $37.3 (13.7-108.1)$ 3426225 (133-849)224 (133-849)3629	All genotypesM/M N=90M/NM N=57M/NM N=28513799.3 (6.7-14.2)9.9 (7.1-14.2)9.1 (6.7-14.1)211636 (0-40)5 (0-40)27 (10-30)2920643.0 (13.7-155.5)37.3 (13.7-108.1)54.8 (15.1-155.5)34267225 (133-849)224 (133-849)222 (186-324)36296		

difficult to assess; M/M, missense/missense; M/NM, missense/non-missense; NM/NM, non-missense/non-missense

Comorbidities and complications

- Jaundice was common for patients across genotypes (M/M: 32.7%; M/NM: 44.4%; NM/NM: 25.0% [Figure 3])
- Biliary events (M/M: 30.4%; M/NM: 33.3%; NM/NM: 0.0%) and bone health problems (M/M: 23.2%; M/NM: 22.2%; NM/NM: 0.0%) were also commonly reported
- Endocrine complications occurred in around 10% of patients with PK deficiency, although the occurrence varied between genotype subgroups (M/M: 7.1%; M/NM: 14.8%; NM/NM: 25.0%)
- History of iron overload was observed in substantial numbers of patients, regardless of genotype: 40.0% in M/M patients, 46.4% in M/NM patients, and 60.0% in NM/NM patients
- Overall, 57.8% of patients experienced ≥ 2 of the complications shown in **Figure 3** (M/M: 56.1%; M/NM: 60.7%; NM/NM: 60.0%)

- The most common cardiac complication in the overall adult population was arrhythmia (5.8%) and was observed in 5.5% of M/M patients, 7.4% of M/NM patients, and 0.0% of NM/NM patients (**Supplemental table 2** [QR code])
- At least 1 thromboembolic event was reported in 7 patients; of the patients who experienced thromboembolic events, the timing of the events relative to splenectomy was known for 6 patients, and in all 6 patients the 13 thromboembolic events occurred after splenectomy (**Supplemental table 3** [QR code]) - Details of the thromboembolic event(s) in a 7^{th} patient were unspecified
- Of patients with a history of iron overload, 25.0% of M/M patients and 12.5% of M/NM patients had never been transfused (**Table 3**)

Table 3. Number of patients with a history of iron overload by transfusion status

	All adult	patients	Genotype subgroups					
Variable	All genotypesM/MN=90N= 57		M/NM N=28		NM/NMª N=5			
	Never transfused n=32	Ever transfused n=55	Never transfused n=24	Ever transfused n=30	Never transfused n=8	Ever transfused n=20	Never transfused n=0	Ever transfused n=5
History of iron overload, ^{b,c} n/N' (%)	7/32 (21.9)	31/53 (58.5)	6/24 (25.0)	16/28 (57.1)	1/8 (12.5)	12/20 (60.0)	NA	3/5 (60.0)

ne number of patients with known results (denoted as N) was used as the denominator in calculation of percentage. Patients with data missing, or with esponse as "Not Reported" or "Not Done" were excluded from the denominator; aLow NM/NM patient numbers make the true prevalence of complications difficult to assess; ^bHistory of iron overload defined as ever having received: 1) chelation therapy or 2) phlebotomy for removal of iron; or within 3 months of enrollment had any of: 3) ferritin >1000 ng/mL, 4) liver MRI (including FerriScan®) >3 mg Fe/g dry weight, or 5) cardiac T2* MRI <20 ms; °5 patients without known transfusion status or history of iron overload were not included; M/M, missense/missense; M/NM, missense/non-missense; MRI, magnetic resonance imaging; NA, non-applicable; NM/NM, non-missense/non-missense

STRENGTHS AND LIMITATIONS

Strengths

- The Peak Registry is a global study, with patients based at numerous sites around the world, which reduces biases toward genotypes that are more common in certain geographic areas or populations
- The breadth of complications captured in the real-world setting for this analysis spans a wide range of clinical phenotypes experienced by patients with each PKLR genotype
- Centralized classification of genotypes in the Peak Registry allows for consistent interpretation of data in line with previous research and publications in patients with PK deficiency²

Limitations

- The absence of certain complications, such as biliary events and bone complications, in the NM/NM group may reflect the low number of NM/NM patients with available data in the analysis (n=5), making the true prevalence of these complications difficult to assess
- Although electronic case report forms require input of lifetime medical history, for many adult patients, recall errors or incomplete medical histories may result in their medical records inadequately reflecting conditions that they may have had as children or young adults; thus, the frequencies reported here could be understated
- Prevalence rates for comorbidities and complications in this analysis represent only diagnosed prevalence, so may exclude complications that have not yet been diagnosed or have been misdiagnosed, therefore potentially underestimating their true prevalence

CONCLUSIONS

- This analysis reveals that adult patients across PKLR genotypes experienced a wide range of serious comorbidities/complications across multiple systems
- In addition to the breadth of comorbidities presented, these data highlight the existence of multiple complications in individual patients with PK deficiency and the need for appropriate monitoring and management of these patients, regardless of genotype

The longitudinal (up to 9 years^a) design of the Peak Registry will allow for continued monitoring and follow-up of comorbidities and complications in patients with PK deficiency

^aPatients who crossed over from the NHS to the Peak Registry may have follow-up of up to 11 years

Acknowledgments: We would like to thank the patients and study investigators for taking part in this study. Editorial assistance was provided by Alex Watson, MSc, Adelphi Communications, Macclesfield, UK, and supported by Agios Pharmaceuticals, Inc.

Disclosures: This study was funded by Agios Pharmaceuticals, Inc.

A Glenthøj: Novo Nordisk – consultancy; Agios, bluebird bio, Celgene, Novartis – consultancy and advisory board member; Alexion – research funding; **R F Grace:** Agios, Dova, Novartis – research funding; Agios, Principia – consulting; E J van Beers: Agios, Forma Therapeutics – advisory board member; Agios, Novartis, Pfizer, RR Mechatronics – research funding; Imara – data safety monitoring board; J-L Vives Corrons and D Pospíšilová: There are no relationships to disclose; B Glader and Y Yan: Agios - consultancy; K H M Kuo: Agios, Alexion, Apellis, bluebird bio, Celgene, Forma therapeutics, Novartis, Pfizer - consultancy; Alexion, Novartis - honoraria; Bioverativ/Sanofi/Sangamo - membership of an entity's Board of Directors or advisory committees; Agios and Pfizer – research funding; **C Lander:** Agios PK Deficiency Patient Advocacy Advisory Council – patient representative; J Williams and B McGee: Agios – employees and shareholders; **P Bianchi:** Agios – scientific advisor; Rocket Pharma – consultancy

References: 1. Grace RF et al. Blood 2018;131(20):2183-92. 2. Bianchi P et al. Am J Hematol 2020;95(5):472-82. 3. van Beers EJ et al. *Haematologica* 2019;104(2):e51–3. 4. Grace RF et al. *Blood* 2019;134(Suppl 1):2223. 5. Boscoe AN et al. Eur J Haematol 2021;106(4):484-92.

P1542