The Pyruvate Kinase Activator Mitapivat Ameliorates Anemia and Prevents Iron Overload in a Mouse Model of Hereditary Spherocytosis

Matte A,1 Wilson AB,1 Federti E,1 Kung C,2 Kosinski P,2 Riccardi V,1 Iatcenko I,1 Dang L,2 Lebouef C,3 Janin A,3 Brugnara C,3 Mohandas N,4 De Franceschi L1

1Dept of Medicine, University of Verona &AOUI Verona; Italy; 2Agios Pharmaceuticals Inc., Cambridge, MA; 3Universtity Diderot of Paris, Paris, France; 4Dept of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA; 5 Laboratory of Red Cell Physiology, New York Blood Center, New York, NY.
Hereditary Spherocytosis (HS)

- **Hereditary Spherocytosis (HS)** is the most common hemolytic anemia due to inherited RBC membrane defects with a prevalence estimated from 1: 2,000 to 1: 5,000 births.

- HS is due to mutation on genes encoding for red cell membrane or cytoskeleton proteins such as ankyrin, band 3, band 4.2 or α-, β-spectrin.

- HS clinical presentation is characterized by hemolytic anemia, reticulocytosis, jaundice, cholelithiasis and splenomegaly.

HS red cells are characterized by membrane mechanical and metabolic instability

• In HS, the absence/reduction in one of the membrane/cytoskeleton key proteins promotes membrane mechanical instability, resulting in:
 – red cell membrane exposure of phosphatidylserine (PS),
 – release of erythroid microvesicles,
 – generation of spherocytes.

• HS red cells display decrease ATP content when exposed to oxidation or after 24hr incubation.

The oral PK activator Mitapivat improves anemia in PK deficiency and thalassemia

• Mitapivat (AG-348) is an oral small-molecule activator of pyruvate kinase.

• Two phase 2 clinical trials of mitapivat, one in adult patients with pyruvate kinase deficiency and the other in non transfusion-dependent thalassemia, demonstrated rapid and sustained increase in Hb levels

• Mitapivat ameliorates murine β-thalassemic anemia with a beneficial effect on iron homeostasis.

Aim of the study

To Investigate the effects of the PK activator, Mitapivat, on red cell metabolism and hematologic phenotype of band 4.2-/- mice, a model of HS.
Study design

- Two to eight months-old female Band 4.2−/− and C57BL6/J mice were used (n=6-11 animals in each group);

- Mitapivat (100 mg/Kg/d) was administrated for 6 months;

- CBC and reticulocytes were determined with a Sysmex Hematology Analyzer;

- Erythroid Annexin-V positivity was evaluated by FACS;

- Perls’ staining was carried out on fixed spleen and liver;

- Spleen and liver iron concentration were measured;

- Immunoblot analysis was carried out on mouse red cells.
Mitapivat ameliorates the anemia of band 4.2−/− mice

*p<0.05 compared to WT mice

°p<0.05 compared to vehicle treated mice
Mitapivat reduces hemolysis in band 4.2−/− mice

*°p<0.05 compared to WT mice
°p<0.05 compared to vehicle treated mice
Mitapivat improves 4.2⁻/⁻ mouse red cell membrane mechanical stability

In 4.2\(^{-/-}\) mice, Mitapivat reduces the release of erythroid microvesicles.
In band 4.2⁻/⁻ mice, Mitapivat reduces splenomegaly and spleen iron-overload.

*SIC

*p<0.05 compared to WT mice

°p<0.05 compared to vehicle treated mice
In band 4.2\(^{-/-}\) mice, Mitapivat decreases liver iron-overload

*\(p<0.05\) compared to WT mice
°\(p<0.05\) compared to vehicle treated mice
Conclusions

• Band 4.2\(^{-/-}\) mice treated with Mitapivat show:
 – Reduced hemolysis and amelioration of anemia
 – Improved red cell membrane mechanical stability
 – Reduction in spleen and liver iron overload

• Mitapivat might represent an interesting and novel therapeutic option for HS patients