Phase 1 Multiple Ascending Dose Study of Safety, Tolerability, and Pharmacokinetics/Pharmacodynamics of Mitapivat (AG-348) in Subjects with Sickle Cell Disease

NCT04000165; Investigator-initiated trial; Principal Investigator: Swee Lay Thein

Julia Z. Xu1, Anna Conrey1, Ingrid Frey1, Jim Nichols1, Laurel A. Menapace1, Laxminath Tumburu1, Timothy Lequang1, Quan Li2, Emily B. Dunkelberger2, Eric R. Henry2, Troy Cellmer2, Varsha Iyer3, Heidi Mangus3, Charles Kung3, Lenny Dang3, Penelope Kosinski3, Peter Hawkins3, Neal Jeffries4, William A. Eaton2, and Swee Lay Thein1

1Sickle Cell Branch, National Heart, Lung, and Blood Institute, 2Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, United States; 3Agios Pharmaceuticals, Inc., Cambridge, MA, United States, 4Office of Biostatistics Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States

Abstract #681

62nd American Society of Hematology Annual Meeting

December 7, 2020
Pyruvate Kinase R (PKR): A new disease modifying target in SCD?

Polymerization of deoxy-Hb S results in vaso-occlusion and hemolytic anemia and is the root cause of sickle cell disease (SCD) complications.

- Elevated 2,3-DPG levels promote polymerization.

Mitapivat (AG-348) is an oral PKR activator that decreases 2,3-DPG and increases ATP levels\(^1\) and improves anemia in PK deficiency and thalassemia.\(^2,3\)

\[\text{Mitapivat} \quad \text{PKR} \quad \text{Improved RBC hydration and health}\]

ATP, adenosine triphosphate; DPG, diphosphoglycerate; Hb, hemoglobin; O\(_2\), oxygen; PKR, red-cell pyruvate kinase; RBC, red blood cell.

\(^1\) Yang et al. Clin Pharmacol Drug Dev. 2018,00(0)1–14; \(^2\) Grace et al. NEJM. 2019;5;381(10):933-944; \(^3\) Kuo et al. Abstract, EHA 2020.
Study Design: Dose Escalation of Mitapivat in SCD

- Nonrandomized, open-label, Phase 1 study; N ≈ 15–25
- Adults (age ≥ 18 years) with stable Hb SS disease eligible
- No transfusions or changes in hydroxyurea/L-glutamine within 90 days

Primary endpoints:
- Safety and tolerability
- Changes in Hb and hemolytic markers

Secondary endpoints:
- Pharmacokinetics
- 2,3-DPG and ATP levels
- O₂ dissociation and sickling tendency

*100 mg dose level added to protocol with amendment #6. BID, twice daily.
** Data is incomplete due to disruptions related to COVID-19 pandemic.
Demographics, Disease Characteristics, and Disposition

<table>
<thead>
<tr>
<th>Baseline Characteristics at Enrollment</th>
<th>N=12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (range), years</td>
<td>40.2 (27-55)</td>
</tr>
<tr>
<td>Male, N (%)</td>
<td>8 (66.7)</td>
</tr>
<tr>
<td>African or African-American, N (%)</td>
<td>12 (100)</td>
</tr>
<tr>
<td>Hydroxyurea use, N (%)</td>
<td>8 (66.7)</td>
</tr>
<tr>
<td>L-glutamine use, N (%)</td>
<td>1 (8.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baseline Laboratory Measures</th>
<th>N=11*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin, mean (SD), g/dL</td>
<td>9.5 (1.0)</td>
</tr>
<tr>
<td>Abs reticulocyte count, mean (SD), K/µL</td>
<td>191.0 (109.3)</td>
</tr>
<tr>
<td>Total bilirubin, mean (SD), mg/dL</td>
<td>2.2 (0.9)</td>
</tr>
<tr>
<td>Lactate dehydrogenase, mean (SD), U/L</td>
<td>374.6 (140.9)</td>
</tr>
<tr>
<td>Hemoglobin F % by HPLC, mean (SD), %</td>
<td>18.3 (10.7)</td>
</tr>
</tbody>
</table>

Subjects # 1-12
- Enrolled by 6 October 2020 (N=12)
- Escalated to 100 mg (N=5)
- Withdrawal of #4 on day 4 per investigator decision*
- Completed 50 mg dose level (N=11)
- Completed study per protocol (N=6)

Subjects # 8-12
- Completed 100 mg dose level (N=3)
- 1. Withdrawal of #10 on day 76 due to other (per patient)**
- 2. Subject #12 ongoing

* #4 withdrawn due to need for medical interventions for an AE unrelated to drug and lost to follow-up; not evaluable for laboratory response.
** #10 self-discontinued therapy due to an AE unrelated to drug; in safety follow-up.
AE, adverse event; Abs, absolute; HPLC, high-performance liquid chromatography; SD, standard deviation; Data cut date: Oct 6, 2020.
Adverse Events

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>N=12 (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades (≥10%)</td>
<td>Grade ≥ 3</td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>4 (30.8%)</td>
<td>2 (15.4%)</td>
<td></td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>4 (30.8%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Vaso-occlusive crisis (VOC)</td>
<td>3 (23.1%)</td>
<td>3 (23.1%)</td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>3 (23.1%)</td>
<td>2 (15.4%)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>3 (23.1%)</td>
<td>1 (7.7%)</td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>3 (23.1%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Heart rate increased</td>
<td>3 (23.1%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>AST increased</td>
<td>2 (15.4%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Blood bicarbonate decreased</td>
<td>2 (15.4%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>2 (15.4%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Sore throat</td>
<td>2 (15.4%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>2 (15.4%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (7.7%)</td>
<td>1 (7.7%)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>1 (7.7%)</td>
<td>1 (7.7%)</td>
<td></td>
</tr>
</tbody>
</table>

Serious Adverse Events (SAEs)

<table>
<thead>
<tr>
<th>Serious Adverse Events (SAEs)</th>
<th>N=12 (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>5 (41.7)</td>
<td></td>
</tr>
<tr>
<td>VOC*</td>
<td>3 (25)</td>
<td></td>
</tr>
<tr>
<td>Pain (shoulder)</td>
<td>1 (8.3)</td>
<td></td>
</tr>
<tr>
<td>Pulmonary embolism (PE)**</td>
<td>1 (8.3)</td>
<td></td>
</tr>
</tbody>
</table>

Summary of VOCs:
- No VOC during dose escalation
- 2 VOCs during 28-day safety follow-up post drug exposure due to known VOC triggers
- 1 VOC during drug taper, improved with extended dosing†

* Regardless of relationship to study treatment.
** Pre-existing PE discovered 4 days after study drug initiation; patient withdrawn (subject #4).
† Triggered protocol amendment to extend length of taper.
AST, aspartate aminotransferase.
Data cut date: Oct 6, 2020.
Mitapivat Decreases 2,3-DPG and Increases ATP in SCD

- Linear PK was observed up to 50 mg BID.
- After 100 mg BID, CYP3A auto-induction effect resulted in ~20% reduction in exposure.

Mitapivat Increases Hemoglobin Level

Mean Change from Baseline (g/dL)

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>N=11</th>
<th>N=11</th>
<th>N=11</th>
<th>N=3</th>
<th>N=8</th>
<th>N=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mg BID</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
</tr>
<tr>
<td>20 mg BID</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
</tr>
<tr>
<td>50 mg BID</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
</tr>
<tr>
<td>100 mg BID</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
</tr>
<tr>
<td>End of taper</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
</tr>
<tr>
<td>End of study</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.3 (0.8)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
<td>1.9 (0.7)</td>
</tr>
</tbody>
</table>

Response parameter N=11

- Maximal Hb increase, mean (SD), g/dL: 1.3 (0.8)
- Hb increase ≥ 1g/dL, N (%): 6 (54.5)
- Maximal Hb increase in subjects with ≥ 1g/dL response*, mean (SD), g/dL: 1.9 (0.7)

* N=6.
Mitapivat Decreases Markers of Hemolysis

Mean Change from Baseline (mg/dL)

- **Total Bilirubin**
 - Dose Level: 5 mg BID, 20 mg BID, 50 mg BID, 100 mg BID, End of taper, End of study
 - N=11, N=11, N=11, N=3, N=8, N=8

- **Lactate Dehydrogenase**
 - Dose Level: 5 mg BID, 20 mg BID, 50 mg BID, 100 mg BID, End of taper, End of study
 - N=11, N=11, N=11, N=3, N=8, N=8

- **Absolute Reticulocyte Count**
 - Dose Level: 5 mg BID, 20 mg BID, 50 mg BID, 100 mg BID, End of taper, End of study
 - N=11, N=11, N=11, N=3, N=8, N=8

Mitapivat, an oral, twice daily PKR activator was well tolerated in subjects with SCD. Pharmacokinetic and safety profile in SCD resembles results from previous studies in PK deficiency and thalassemia.

This study provides proof of concept:
- Mitapivat reduces 2,3-DPG and increases in ATP in patients with SCD.
- During a short period (6-8 weeks) of dose escalation, mitapivat increased Hb by ≥ 1g/dl in 6/11 evaluable subjects and decreased hemolytic markers, signaling its potential to improve clinical outcomes in SCD.

An extension study (ClinicalTrials.gov NCT04610866) will evaluate safety, tolerability, pharmacokinetics, and pharmacodynamics of long-term mitapivat dosing in SCD subjects enrolled on NCT04000165.

Summary
Acknowledgments

NHLBI
- Swee Lay Thein, MD, DSc
- Anna Conrey, NP
- Eveline Gwaabe, NP
- Ingrid Frey, RN
- Jim Nichols, RN
- Laurel Menapace, MD
- Neal Jeffries, PhD
- Lax Tumburu, PhD
- Tim Lequang, MS
- Maureen Lundt, MS

Agios Pharmaceuticals, Inc.
- Varsha Iyer, PhD
- Heidi Mangus, BS
- Charles Kung, PhD
- Lenny Dang, BA
- Penelope Kosinski, MS
- Peter Hawkins, PhD
- Thomas Winkler, MD
- Maggie Grasso, MD
- Keely Gilroy, PhD
- Sarah Gheuens, MD, PhD, MMSc

NIDDK
- William Eaton, MD, PhD
- Quan Li, PhD
- Emily Dunkelberger, PhD
- Eric Henry, PhD
- Troy Cellmer, PhD
- Kristen Glass, BA